When light falls on the retina at the back of the eye it activates receptors that convert the light energy into nerve signals, which are transmitted along the optic nerve to the brain. The details are astonishing. There are over a hundred million of these receptors – in each of our eyes! They come in two different forms, rod-shaped and cone-shaped. Both forms contain photosensitive organic molecules (see below) which play subtly different roles. Rods are more numerous (120 million) and more than 1000 times more light-sensitive; but not to color. They are responsible for how well we can see – and why we cannot distinguish colors – at night and in low light. In bright light they are "bleached," i.e. deactivated.
Cones, by contrast, come in three varieties, distinguished by their different "response curves" to bright light of different wavelengths (Figure), each sending different, "color-coded" nerve signals to the brain. The colors we perceive are a dynamic summation of these signals, which themselves depend on the intensity and wavelength of the incoming light, from a large number (of the 6 million cones available) of these three receptors. (The absence or deficiency of one of them is a primary cause of color-blindness.)
Though the color-sensitivities of the rods and the three sorts of cone differ, they all depend on the same photo-reaction of the same molecule. 11-cis-retinal is covalently bound (as a Schiff base) in each case to a different (opsin) protein, which provides a specific environment that defines the specific color response of the chromophore.
The recycling process is rapid for cones, which adapt quickly to changes in the incident light; but much slower for rods, which can take over half an hour to adapt after exposure to bright light; which is why it can take so long to acquire optimal night vision in this situation.
References. Color is an ideal topic for the web, and you will find many excellent treatments.
e.g. at http://www.webexhibits.org/causesofcolor/. An excellent book, which all good libraries should have, is "Bright Earth. The Invention of Colour" by Philip Ball. ISBN 978-0-099-50713-0
Anthony J. Kirby, Cambridge University, UK
Cones, ao contrário, vêm em três variedades, que se distinguem pelas suas diferentes "curvas de resposta" à luz intensa de diferentes comprimentos de onda (Figura), cada enviando sinais nervosos diferentes, "codificados por cores" para o cérebro. As cores que percebemos são um somatório dinâmico destes sinais, os quais dependem da intensidade e comprimento de onda da luz recebida, a partir de um grande número (dos 6 milhões de cones disponíveis) desses três receptores. (A ausência ou deficiência de um deles é a principal causa do daltonismo.)
Um quantum (hn) de energia luminosa é suficiente para converter 11-cis-retinal (derivado da vitamina A) para a forma trans foto-insensível. Esta mudança drástica de forma molecular desencadeia uma série controlada de mudanças que incluem o envio do código de cores do sinal para o cérebro, e a liberação da (agora mal ajustada) molécula de trans-retinal da proteína. O trans-retinal é economicamente reciclado por enzimas para regenerar o 11-cis-isômero.
e.g. at http://www.webexhibits.org/causesofcolor/. Um livro excelente, que todas as bibliotecas boas deveriam ter, é: "Bright Earth. The Invention of Colour" by Philip Ball. ISBN 978-0-099-50713-0
Nenhum comentário:
Postar um comentário